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Abstract. In this paper, motivated by Chi-Kou's weighted least-squares (WLS) Chebyshev approximation method for the 
design of FIR filters with linear phase, we propose a new self-initiated iterative WLS Chebyshev approximation method for 
the design of FIR digital filters with arbitrary complex frequency response and real filter coefficients. The proposed method 
not only inherits all the advantages of Chi-Kou's method but also is computationaily more efficient than Chi-Kou's method 
for the case of linear phase FIR filter design. On the other hand, contrast to Chit-Mason's time-domain least mean square 
(LMS) approximation methods, the proposed method is a frequency-domain WLS method based on similar philosophies. 
Several design examples are provided to demonstrate the good performance of the proposed method. 

Zusammenfa.~aag. Diese Arbeit wurde angeregt durch Chi-Kou's gewichtete Least-Squares (WLS) Tschebyscheff-Approxima- 
tion zum Entwurf von FIR-Filtern mit linearer Phase. Es wird eine selbst-initialisierende iterative WLS-Tschebyscheff-Approxi- 
mationsmethode zum Entwurf yon FIR-Filtern mit beliebigem komplexem Frequenzgang und reellen Filterkoeffizienten 
vorgeschlagen. Dieses Verfahren iibernimmt nieht nur die Vorteile der Methode von Chi-Kou, sondern ist zudem rechen- 
technisch effizienter fiir den Fall des Entwurfs linearphasiger Filter. Auf der anderen Seite ist die vorgeschlagene Methode im 
Gegensatz zum Zeitbereichsverfahren von Chit-Mason (Least-Mean-Square, LMS) eine WLS-Frequenzbereichs-Methode, die 
auf entsprechenden Grundlagen basiert. Es werden verschiedene Beispiele wiedergegeben, durch die die Leistungsf'~ihigkeit des 
vorgeschlagenen Verfahrens demonstriert wird. 

R6sum6. Dans cet article motiv6 par la m6thode d'approximation de Tchebycheff avec des moindres carr6s pond6r6s, proposes 
par Chi-Kou, pour l'61aboration des filtres RIF fi phase lin6aire, nous proposons une approximation de Tchebycheff it6rative 
auto-initi6e pour r61aboration des filtres RIF num6riques avec une r6ponse fr6quentielle complexe arbitraire et des coefficients 
r6els. La m6thode propos6e h6rite non seulement de tous les avantages de la m6thode de Chi-Kou, mais est 6galement plus 
efficace du point de vue de calcul que la m6thode de Chi-Kou, pour le cas des filtres fi phase lin6aire RIF. D'un autre c6t6, 
en contraste avecla m6thode d'approximation de moindres carr6s du domaine temporel de Chit-Mason, la m6thode propos6e 
est une m6thode de moindres carr6s pond6r6s dans le domaine fr&tuentiel bas6 sur des philosophies similaires. Plusieurs 
exemples d'61aboration sont fournis pour d6montrer les bonnes performances de la m6thode propos&e. 

Keywords. Weighted least-squares (WLS) estimator; complex Chebyshev approximation; equiripple FIR digital filter; absolute 
approximation error. 

1. Introduction 

Fini te  du ra t ion  impulse response ( F I R )  digital 

filters have been widely used in var ious signal pro- 
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cessing appl icat ion areas such as speech processing, 

image processing, communica t ions ,  seismology, 

radar  and  sonar  because they are inherent ly  stable 

and  l inear phase can be easily attained.  The win- 

dowing method  and  the op t i mum approx imat ion  

method  are the two major  F I R  filter design meth-  

ods. The latter outperforms the former in that  the 
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required order of the filter is smaller for the same 
specifications, and in that different approximation 
errors in different frequency bands can be easily 
accommodated. Rivlin and Shapiro [7, 19, 20] have 
shown that the best Chebyshev approximation is 
also a best weighted least-squares (WLS) approxi- 
mation with a suitable weighting function. Lawson 
[17, 18] proposed a fundamental algorithm, which 
is an iterative procedure for seeking a suitable 
weighting function and the extremal set, for com- 
puting the best Chebyshev approximation (l~ 
approximation) by means of a weighted lp approxi- 
mation (p<  o0). It has been reported in [7, 17, 18] 
that this algorithm converges very slowly and some 
modifications were suggested to accelerate the 
algorithm. However, it has been observed by Law- 
son, Rice and Usow [18] that these modifications 
sometimes lead to divergence. Parks and McClellan 
[11, 14] proposed an iterative algorithm for linear 
phase FIR filter design, which is a linear weighted 
Chebyshev approximation, allowing the exact spe- 
cification of the cutoff frequencies. The well-known 
Parks-McClellan algorithm is flexible and compu- 
rationally efficient, although it needs a suitable ini- 
tial set of extremal frequencies. Recently, Chi and 
Kou [3, 4] proposed an efficient WLS Chebyshev 
approximation method for the design of linear 
phase FIR filters which performs as well as the 
well-known Parks-McClellan algorithm [11, 14] 
with some extra advantages. For instance, the for- 
mer does not need the initial guess for a suitable 
set of extremal frequencies or filter coefficients; it 
is applicable for any type linear phase FIR filters 
with no need of nontrivial modifications required 
by the latter. However, these two optimum 
approximation methods are not applicable in 
the design of FIR filters with arbitrary complex 
frequency response. 

As to complex Chebyshev approximation prob- 
lems, a number of design techniques have been 
reported in the open literature. Steiglitz [22] pro- 
posed a method for designing FIR all-pass phase 
equalizers by linear programming. He showed that 
the solution of the linear programming is optimum 
to first order. Chen and Parks [2] approached a 
Signal Processing 

complex approximation problem by converting it 
into a nearly equivalent, real approximation prob- 
lem which can be solved by a standard linear pro- 
gramming algorithm. Preuss [16] formulated a 
complex approximation problem as an equaliza- 
tion problem and then used a generalization of the 
Remez exchange algorithm to solve it. Schulist [21] 
modified the Preuss algorithm to accelerate it. 
Besides, he showed that if nonlinear phase filters 
have to be designed, the substitution of the Newton 
interpolation formula by a Gaussian relaxation 
algorithm yields good results, but sometimes it 
does not converge to the optimum solution for the 
case of linear phase filters. Pei and Shyu [15] con- 
verted the complex Chebyshev approximation into 
two real Chebyshev approximations to each of 
which the Remez exchange algorithm can be 
applied. Chit and Mason [5, 10] proposed time- 
domain least mean square (LMS) approximation 
methods which iteratively update the filter input as 
well as the filter coefficients, where the filter input 
consists of sinusoidal signals of all sample frequen- 
cies of interest, such that the approximation error is 
equiripple. Other complex approximation methods 
can be found in such as [1, 6, 8, 9, 23-25]. 

In this paper, we propose a new WLS Chebyshev 
approximation method motivated by the previ- 
ously mentioned Chi-Kou's WLS Chebyshev 
approximation method [3, 4] for the design of FIR 
digital filters with arbitrary complex frequency 
response. The proposed method not only inherits 
all the advantages of Chi-Kou's method but also 
is computationally more efficient than Chi-Kou's 
method for the linear phase case. On the other 
hand, the proposed approximation method can be 
viewed as a frequency-domain counterpart to Chit- 
Mason's approximation LMS methods [5, 10] 
based on similar philosophies. 

In Section 2, we present the new WLS Cheby- 
shev approximation method. In Section 3, five 
examples including two lowpass filters, a full-band 
differentiator, a chirp all-pass phase equalizer and 
a sine-delay all-pass phase equalizer are provided 
to demonstrate the good performance of the pro- 
posed WLS Chebyshev approximation method. 
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Finally, we provide a discussion and draw some 
conclusions. 

2. The new WLS Chebyshev approximation 
method 

Assume that the desired complex frequency 
response Hd(f)  is conjugate-symmetric, i.e., 
H d ( f ) = H ~ ( - f ) ,  and that the domain BNTC 
[0, 0.5] over which Hd(f)  is well defined includes 
p disjoint nontransition bands as follows: 

BNT= B1 w B2 ~ " " " u Bp, 

where 

B.,={flf,.l<<.f<<.f,.2}, r e = l , 2  . . . .  ,p, 

f,.1 and f,.2 denote the specified cutoff frequencies 
in the ruth frequency band Bin. Then the union of 
the transition bands, denoted Bxs, is given by 

Bvs = {flO<~f<~½,fCBNv}. 

Assume that the filter to be designed is an 
( M -  1)th-order FIR filter with real filter 
coefficients h(n). The frequency response is then 

M - - 1  
H ( f ) =  Y, h(n)e -j2~f" 

n - - 0  

M - - I  

= ~ h(n)cos(Znfn) 
n - - 0  

M - - 1  

- j  y, h(n) sin(2nfn). (1) 
n = 0  

We define the complex approximation error E ( f )  
a s  

E ( f ) = H a ( f )  - H ( f )  

=Er( f )+jEi( f ) ,  f~Byv,  (2) 

where Er(f) and Ei(f)  are the real part and the 
imaginary part of E( f ) ,  respectively. Let W~(f), 
f ~  Byv, be a piecewise-constant function associated 
with the desired relative approximation error ratio 
among p frequency bands, defined as 

We(f )=pro, if f~Bm, (3) 

where Pl >0,  p2>0 . . . . .  pp>O, max{p1, P2 . . . .  , 
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pp}=l ,  and the ratio (1/pl):(1/p2):' ' ':(1/pp) 
denotes the desired relative approximation error 
ratio among B~, B2 . . . . .  Bp. Our object is to find 
a set of filter coefficients h(n) by the WLS estimator 
such that H ( f )  is equiripple with 61:62:" • ": 6p = 
(1/pO:(1/p2):' '" :(1/pp), where 6,, is the maxi- 
mum approximation error in B,,. Next, let us pre- 
sent the WLS estimator on which the new 
approximation design method is based. 

For notational simplicity, let Ha(k), We(k), 
E(k), E,.(k) and El(k) also denote Hd(f=k/2N),  
We(f=k/2N), E( f=k/2N) ,  Er( f=k/2N) and 
Ei(f=k/2N),  respectively, where N is the total 
number of uniform samples in the interval [0, 0.5]. 
Thus, by (1) and (2), we can express E,(k) and 
El(k) for k = 0, 1 , . . . ,  N -  1, in the following linear 
vector form: 

[ E~ l IRe(Hd)]  [DD;]h, 
Ei ] = LIm(Hd )J - (4) 

where Er and Ei denote the real part and the imagi- 
nary part of E, respectively, Re(Hd) and Im(Hd) 
denote the real part and the imaginary part of Hd, 
respectively, 

h-- [h(O), h ( 1 ) , . . . ,  h(M- 1)]', 

E =  [E(0), E(1) . . . . .  E ( N -  1)]', 

Hd = [Hd(0), nd(1) . . . . .  n d ( N -  1)]', 

and D1 as well a s  D2 are N × M matrices with the 
( i , j ) th  element [Dl]ij = cos( ( / -  1 ) ( j -  1)1t/N) and 
[D2]v = - s i n ( ( / -  1 ) ( j -  1)rt/N), respectively. The 
sum of weighted error squares is defined as 

N - l  

J (h)=  ~ w(k)lE(k)l 2 
k - 0  

= g tr W g r  -3t- g ~ w g i  

LE~J LO WJLE~J 

where W= diag[w(0), w(l) . . . . .  w ( N -  l)] with 
w(k) >~ 0 for all 0 ~< k <~ N -  1. It is well-known that 
the WLS estimate, h, of h which minimizes J(h) is 
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given by [ 12] 

. [-Re(Hd)-] 
h= [D' WIDI-I D' wI [ Im(Hd)J '  (6) 

where D'=[D[ D~] and Wl=diag[W, W]. The 
new approximation method to be presented is 
based on the following well-known property of  
WLS estimators. 
(P1) The larger the weight w(k), the smaller is the 

absolute approximation error IE(k)l. 
The new approximation method to be presented 

is an iterative algorithm based on (P1) for finding 
the optimum w(k) such that IE(k)l is equiripple 
with the desired approximation error ratio among 
the nontransition bands or, equivalently, 
J We(k)E(k)[ for k/2N~Bwr is equiripple. Before 
presenting the new design method, let us define 
some notations for ease of  later use; 
- Error ripple E~,(k): 

E~(k) = IE(k) l, k/ZU~B i ,  

i = 1 , 2  . . . . .  q, (7) 

where q is the total number of  error ripples in 
Bm and 

i __ Bin- {f]f~-~ <~f<~f~} cB,,,  

where 0 fm=fmi, fq=fm2 a n d f ~ , . . .  , f q - 1  are 
the frequencies at each of  which ]E(f)[  is a local 
minimum. 

i 
- Amplitude em of error ripple E~(k)" 

; -- max{E~(k), k/2NEB~}. (8) em 

- Piecewise-constant function R(k), k/2N~BNT: 

We(k)e,,-p,,em, if k/2N~B~. (9) R(k) = i _ i 

The new design method, which is shown in Fig. 1, 
begins with the initial weighting function 

I We(k), k/2N~BNT, 
w(°)(k) = [0, k/2N~BTs. 

(10) 

Assume that we ended up with the weighting func- 
tion w(k)= w (n- 1)(k) at the ( n -  1)th iteration. For 
the nth iteration, the WLS estimate, h, is computed 

SETh = lW(°)(k) ] 

]COMPUTE WLS ESTIMATE OF ~__~ n = n + 1 ] 
FILTER COEFFICIENTS 

COMPUTE E(k)," SEARCH FOR ] 
ERROR RIPPLES AND FORM R(k)] 

UPDATE WEIGHTING 
FUNCTION w(n)(k) ] 

Fig. 1. The proposed WLS Chebyshev approximation method. 

by (6), in which w(k)= w ("- °(k). Then the associ- 
ated E(k) is computed by (4). Next, we search for 
E~m(k) and e~,, for all i and m, and form R(k). Then 
we check whether I We(k)E(k)J for k/2N~BNT is 
equiripple by 

Rmax - Rmin ~< O', (1 I) 
Rlllax 

where 

Rmax = max{R(k), k/2NeBNT}, 

Rmin ~-- min{R(k), k/2N~BNT}, 

and o- is a preassigned small positive constant. If  
I We(k)E(k)l is not equiripple yet, we update the 
weighting function by 

w(n)(k) = I w  (n- l)(k)R(k)/w . . . .  

(0, 
k/2N~BNT, 
k/2N~Bvs, 

(12) 

where 

wmax=max{w(n-l)(k)R(k), k/2N~BNT} (13) 

normalizes w(")(k) such that 0 < w(")(k) ~< 1 for all 
k/2NeBNT. 

It is advisable here to indicate the distinctions 
between the proposed approximation method and 

Signal Processing 
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Chi-Kou's method [3, 4] as well as Chit-Mason's 
method [5] as follows: 
(R1) One can see, from (12) and (9), that the pro- 

posed method updates the weighting 
function w(")(k) associated with the nontran- 
sition bands according to the first power of 
error ripple amplitudes, whereas Chi-Kou's 
method updates the weighting function 
w(')(k) according to the square of error rip- 
ple amplitudes. On the other hand, the 
weighting function over the transition bands 
is set to zero by both. 

(R2) Chi Kou's method includes an inner loop 
and an outer loop. In the inner loop, 
w(')(k) is updated only to yield an equiripple 
frequency response in each frequency band 
without considering the actual relative 
approximation error ratio among different 
frequency bands. After equiripple frequency 
response has been attained, in the outer 
loop, w(n)(k) is then adjusted according to 
the actual approximation error ratio among 
different frequency bands. On the other 
hand, the proposed method includes only a 
single loop (see Fig. 1) within which w(k) 
is updated according to both amplitudes of 
error ripples and desired approximation 
error ratio among different frequency bands 
simultaneously (see (12) and (9)). 

(R3) The convergence of both the proposed 
approximation method and Chi-Kou's 
method is supported by the property (P1). 
By our experience, the proposed approxima- 
tion method is computationally more effi- 
cient than Chi-Kou's method from the 
viewpoint of number of iterations spent for 
convergence. Two reasons for this are given 
as follows. The first one is just the judicious 
single loop instead of nested loops used by 
the former as discussed in (R2). The other 
reason is that the latter often converges 
towards the optimum h(n) in an over oscil- 
lating manner by our experience. Therefore, 
we update the weighting function in a more 
conservative fashion as mentioned in (R 1) so 
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that the former converges in fewer iterations 
than the latter. 
One can observe, from (5), that J(h) is also 
the sum of absolute squares of the weighted 
complex error x ~ k ) E ( k )  which can also be 
expressed as 

~ E ( k )  = ~ H d ( k )  - ,,/w(k)H(k), 

where ~ H d ( k )  and ~ H ( k )  are actu- 
ally the amplitude and phase of the steady- 
state output of the desired filter as well as 
the filter under design, respectively, when the 
common input to both filters is the sinus- 
oidal signal ~ sin(2~(k/2N)n). On the 
other hand, Chit and Mason [5] assume that 
the common input to both the desired filter 
and the filter under design is given by 

N - - I  

C(k) sin(2~(k/2N)n) 
k = 0  

and that y~(n) and y(n) are the correspond- 
ing outputs of the former and the latter, 
respectively. The filter coefficients h are 
obtained by minimizing mean square error 
of e(n)=yd(n)-y(n). They iteratively up- 
date C(k) and h such that I We(k)E(k)l for 
k/2NeBNv is equiripple where E(k) is the 
discrete Fourier transform of e(n). In other 
words, conceptually, Chit-Mason's method 
and the proposed method are based on simi- 
lar philosophies while the former is a time- 
domain approach and the latter is a fre- 
quency-domain approach. 

Although the proposed approximation method is 
applicable to approximating any arbitrary fre- 
quency response, however, some constraints on the 
filter coefficients h(n) might be implicitly required 
in some applications. For instance, the linear phase 
constraint requires either symmetry or antisym- 
metry with respect to the center of h(n). Therefore, 
the nonredundant filter coefficients basically con- 
sist of only one half of the filter coefficients for this 
case. Some constraints such as h(n)=0 for some 
n's, symmetry or antisymmetry ofh(n) can be easily 
taken into account in the proposed method by 
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appropriately reformulating the linear model given 
by (4) such that h only consists of nonredundant 
filter coefficients. 

Finally, let us conclude this section with an 
analysis below that shows that the following fact 
(F1) is true. 
(F1) The obtained optimum FIR filter is equiripple 

with desired approximation error ratio among 
p nontransition bands. 

From (12) and (13), one can see that 

w~,)(k ) = w ~"- ' ) (k)R(k)  
max { w ~"- i)(k)R(k), k / 2 N e  BNT } 

Vk/2NE BNT. (14) 

Assume that w~")(k) converges to #(k) as n 
increases. Thus, we have, from (14), that 

~(k)R(k)  
, ~ ( k )  - 

max{ ~(k)R(k) ,  k /2N~BNT} 

Vk/2Ne BNT, (15) 

which implies 

R(k)  = max{ ~(k)R(k) ,  k /ZNeBNT} 

= ff,(k')R(k') Vk/2N~BNT, (16) 

where k' is associated with the maximum of 
~(k)R(k)  for k /2NeBNT.  Letting k =k '  in (16), we 
have 

k(k') = 1. (17) 

Substituting (17) back to (16) yields 

R(k)  = R(k') 
=/~ (constant) Vk/2NeBNT,  (18) 

which together with (9) imply that p,,e~ = 8 for all 
i and m, or e~, = 8m = 8/pm for all i (i.e., IE(k)l for 
k / 2 N ~  B" is equiripple with maximum error 8,.) as 
well as 8, : 82 :" • • : 8p = (1/p,) : (1/P2) :" " " : (1/pp). 

3. Design examples 

design examples including a linear phase lowpass 
filter, a nonlinear phase lowpass filter, a full-band 
differentiator, a chirp all-pass phase equalizer and 
a sine-delay all-pass phase equalizer using the pro- 
posed method with the parameter a set to 0.01 are 
presented in the following, respectively. 

E X A M P L E  1. Linear phase lowpass filter (taken 
from [3, 4, 13]). 

The desired frequency response H d ( f )  is given 
as follows: 

f e-j 2~f(M - s)/2, 

H d ( f )  = ~ if f ~ B ,  = [0, 0.2] (passband), 

(0 ,  if f~B2=[0.3,  0.5] (stopband). 

The filter to be designed is a 2-band (p = 2) linear 
phase FIR filter of length M = 28 (type II) and 

W e ( f ) = ( p , = O . 1 ,  f e B , ,  
tP2 = 1, f~B2.  

In this example, N =  2000 was used. For a type II 
linear phase FIR filter, the filter coefficients must 
satisfy the constraint 

h(n) = h ( M -  1 - n), 

which, as mentioned previously, can be taken into 
account in the linear model (4) with h=  
[h(0),h(1) . . . . .  h ( M / 2 -  1)]' instead. The total 
iterations spent by the proposed approximation 
method was 10, which is much smaller than 39, the 
total iterations spent by Chi-Kou's method 
reported in [3, 4]. Figure 2(a) shows the magnitude 
response of the designed lowpass linear phase FIR 
filter. Figure 2(b) shows the absolute approxima- 
tion error IE(f)[ which is equiripple with maxi- 
mum errors 8,=0.0092 and 82=0.00092 in the 
passband and the stopband, respectively. Note that 
8 , / 8 2 ~ ( l / p , ) / ( 1 / p 2 ) = l O .  These results are the 
same as the corresponding results reported in [3, 4] 
obtained by Chi-Kou's method as well as those 
reported in [18] obtained by Parks-McClellan's 
method for the same example. 

In order to demonstrate that the proposed WLS 
Chebyshev approximation method works well, five 
Signal Processing 

E X A M P L E  2. Lowpass filter with constant group 
delay rd (taken from [2, 15, 16, 21]). 
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Fig. 2. Example 1. The designed linear phase lowpass filter with 
M= 28 (type II), passband = [0, 0.2] and stopband = [0.3, 0.5]. 

(a) Magnitude response, (b) absolute approximation error. 

The desired frequency response H d ( f )  is given 
as fol lows: 

H d ( f )  

~e -jEt-J, i f f E B j  = [0, 0.06] (passband),  
/ 

[0,  if f e B 2  = [0.12, 0.5] (stopband),  

where rd = 12. The filter to be designed is a 2-band 
filter (p = 2) o f  length M =  31 and 

W e ( f ) = { p , = O . 1 ,  f ~ B i ,  
P2 = 1, f~.B2. 

In this example,  N =  1000 was used. The total itera- 
tions spent by the proposed approximation method 
was 11. The magnitude response and group delay 

lo(a) oz 
-10 

-20 

~.~o 
] .4o 
g~ 

-5o 

-60 

-70 

-"~ o.;5 0'.~ 

(b) 

12 

lO [ 

0 0.;5 oi~ 

0.15 0.2 0.25 013 0.35 014 0.45 0.5 

f 

0.15 012 0.25 0.3 0.35 0.4 0.45 ~ 0.5 

f 

0 0.05 0.I 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

f 

Fig. 3. Example 2. The designed lowpass filter with M = 31, 
rd = 12, passband = [0, 0.06] and stopband = [0.12, 0.5]. (a) 
Magnitude response, (b) group delay response, (c) absolute 

approximation error. 

response o f  the designed filter are shown in Figs. 
3(a) and 3(b), respectively. One can see, from Fig. 
3(b), that in the passband the group delay is nearly 
constant although it oscillates around 12 with a 
maximum deviation of  1.096. Figure 3(c) shows 
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the absolute approximation error IE(f) l  which is 
equiripple with maximum errors 61 =0.0441 and 
62=0.00443, in the passband and the stopband, 
respectively. Note that, again, 81/62 
( 1/Pl)/(1/P2) = 10. These results together with the 
corresponding results for the same example 
reported in [2, 15, 16, 21] are shown in Table l, 
from which one can see that they are all compar- 
able to one another. 

EXAMPLE 3. Full-band differentiator with con- 
stant group delay rd (taken from [15]). 

The desired frequency response Hd(f )  is given 
as follows: 

Ha(f)=j21t f  e -j2~J, 0~<f~<0.5, 

where ra = 11.5. The filter to be designed is a single 
band (p = 1 ) filter with length M = 31 and 

We(f)  = I, 0~<f~<0.5. 

In this example, N =  1000 was used. The total itera- 
tions spent by the proposed approximation method 
was also 11. Figures 4(a) and 4(b) show the magni- 
tude response and group delay response, respec- 
tively. One can see, from Fig. 4(b), that there is a 
large group delay error at the origin ( f =  0) due to 
an unavoidable phase discontinuity at the origin. 
Since the magnitude response at the origin is zero, 
the group delay error at the origin is of no conse- 
quence. Figure 4(c) shows IE(f) l  which, again, is 
equiripple with maximum error 0.0185 which is 
slightly smaller than the corresponding maximum 
error 0.01952 obtained by Pei-Shyu's method 
reported in i 15]. 

EXAMPLE 4. Chirp all-pass phase equalizer with 
linear group delay (taken from [22]). 

The desired frequency response H d ( f )  is given 
as follows: 

n d ( f )  = e - j l2nfL+#(2~f-n/2)2l ,  0 ~<f~<0.5, 

where L = ( M - 1 ) / 2  and f l=  16/21t. The desired 
group delay is L+2fl(21tf-~r/2). The filter to be 
designed is a single band filter ( p =  1) of  length 
M =  61 and 

We(f )= l, 0~<f~<0.5. 

In this example, N =  1000 was used. Because the 
phase -f l(2rcf-rt/2) 2 of the all-pass filter 
e j2~1I~" Hd( f )  is symmetric with respect to f =  0.25, 
the filter coefficients h(n) must satisfy the following 
constraints [22]: 

h ( L -  n) = h(L + n), if n is even, 

h ( L -  n) = - h ( L +  n), if n is odd. 

Remark that these constraints can be easily put 
into (4) and the resulting h consists only of  non- 
redundant filter coefficients. The total iterations 
spent by the proposed approximation method was 
10. The magnitude response and absolute approxi- 
mation error I E ( f ) l  of the designed filter are shown 
in Figs. 5(a) and 5(b), respectively. One can see, 
from Fig. 5(b), that the absolute approximation 
error [E(f)[ is equiripple with maximum error 6 = 
0.00107 which is smaller than the corresponding 
maximum errors 0.001595 and 0.02 (read from Fig. 
5 in [5]) obtained by Pei-Shyu's method [15] and 
Chit-Mason's  method [5], respectively. Figures 
5(c) and 5(d) show the group delay response and 

Table 1 

Numerical results of  Example 2 (lowpass filter with constant group delay). Maximum approximation errors 81 (passband), 
82 (stopband) and maximum deviation of group delay (passband) obtained by the proposed method and the corresponding 
results reported in [2, 15, 16, 21 ]. M =  31, rd = 12, BI = [0, 0.06] (passband) and B2 = [0.12, 0.5] (stopband) 

Proposed Chen-Parks  Preuss Schulist Pei Shyu 
method method [2] method [ 16] method [2 l] method [ 15] 

81 0.0441 0.0436 0.0426 0.0425 0.04404 
82 0.00443 0.00436 0.00426 0.00425 0.004401 
Maximum deviation of group 

delay in passband 1.096 0.97 1.111 - 1.063 

Signal Processing 
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Fig. 4. Example 3. The designed full-band differentiator with 
M =  31 and rd = 11..5. (a) Magnitude response, (b) group delay 

response, (c) absolute approximation error. 

the group delay error response, respectively. One 
can see, from Fig. 5(d), that maximum deviation 
of  group delay occurs at both zero and folding 
frequencies but its value is only 0.0926 which is also 
smaller than Pei-Shyu's group delay error 0.1146 
reported in [ 15]. 

EXAMPLE 5. Sine-delay all-pass phase equalizer 
(taken from [22]). 

The desired frequency response Hd(f) is given 
as follows" 

H d ( f ) = e  -j[z~fL-2~O-c°s{2~f))l, 0 ~ < f ~ < 0 . 5 ,  

where L=(M-1)/2.  The desired group delay is 
L - 2 ~  sin(2~f). The filter to be designed is also a 
single band filter (p = 1) of  length M =  61 and 

We(f)= l, 0~<f~<0.5. 

In this example, N =  1000 was used. Because the 
phase 2 n ( 1 - c o s ( 2 n f ) )  of the all-pass filter 
e jE~IL • H a ( f )  is antisymmetric with respect to f =  
0.25, the filter coefficients h(n) must satisfy the 
following constraint [22]" 

h(L-n)=h(L+n)=O, i f n  is odd. 

Again, we put this constraint into (4) appropriately 
to keep the antisymmetry property of  the desired 
phase. Then h = [h(0), h(2) . . . . .  h(M- 1)]' for this 
case. The total iterations spent by the proposed 
approximation method was also 10. The magnitude 
response and absolute approximation error IE(f) l  
of  the designed filter are shown in Figs. 6(a) and 
6(b), respectively. One can see, from Fig. 6(b), that 
the absolute approximation error is equiripple with 
maximum error 6 =0.00097 which is comparable 
with Chit-Mason's  maximum error 0.00094 (read 
from Fig. 4 in [5]) and meanwhile is smaller than 
Pei-Shyu's maximum error 0.001528 [15] for the 
same example. Figures 6(c) and 6(d) show the 
group delay response and the group delay error 
response, respectively. One can see, from Fig. 6(d), 
that maximum deviation of  group delay occurs at 
both zero and folding frequencies but its value is 
only 0.1015 which is also smaller than Pei-Shyu's 
group delay error 0.1258 reported in [15]. 

The previous design examples demonstrate that 
the proposed WLS Chebyshev approximation 
method works well, and the number of iterations 
spent in each example is also small (around 10). 
As stated in (F1), the designed filters are indeed 
equiripple with desired approximation error ratio 
among nontransition bands. We also performed 
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Fig. 5. Example 4. The designed chirp all-pass phase equalizer with M= 61. (a) Magnitude response, (b) absolute approximation 
error, (c) group delay response, (d) group delay error response. 

the designs described in Examples 1, 4 and 5 using 
the proposed approximation method without tak- 
ing into account of the implicit constraints on filter 
coefficients. However, the obtained results are 
almost indistinguishable from the previous results 
for each example. The reason for this is that the 
value for parameter N used in each of these three 
examples is large enough to reflect the implicit con- 
straints on the designed filter. On the other hand, 
the previous examples also support that the pro- 
posed WLS Chebyshev approximation method has 
better performance than both Chit-Mason's 
method and Pei-Shyu's method. 

4.  D i s c u s s i o n  and c o n c l u s i o n s  

We have presented a new self-initiated iterative 
WLS approximation method (see Fig. 1) for the 
Signal Processing 

design of FIR filters with arbitrary complex fre- 
quency response and real filter coefficients. Both 
the proposed method and Chi-Kou's method are 
based on the property (P 1) of the well-known WLS 
estimator although the latter is only applicable to 
the design of FIR filters with linear phase. Contrast 
to Chl-Kou's method, the proposed method 
adjusts the filter coefficients by simultaneously con- 
sidering both approximation error in each fre- 
quency band and desired relative approximation 
error ratio among all frequency bands of interest 
(see (R2)). The key weighting function w ( k ) =  

w(")(k) (see (12)) over the nontransition bands 
obtained in the nth iteration is determined by error 
ripple amplitudes instead of squares of error ripple 
amplitudes as in Chi-Kou's method (see (R1)), 
while the part of w(k)  associated with the tran- 
sition bands is set to zero. We also showed five 



C.- Y. Chi, S.-L. Chiou / Chebyshev approximation method for FIR filter design 3 4 5  

-0.01 

30 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

f 

Icl 

(a) . x l 0 ,  (b) 
0,01 

0.008 t 
0.006 

~ 0.O04 

~ 0.002 

• ~ -o.~ 

-0.001 

-0.0~ 

29 

28 

27 

26 

25 

24 

23 

0.06 r 

0.04 

0.02 

41.112 

~ 41.Ot 

-0.1 

-0.12 ~ 

0.05 0.1 0,15 0.2 0.25 0,3 0,35 0.4 0,45 0,5 

f 

(dl 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0,5 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0,5 

f f 

Fig. 6. Example 5. The designed sine-delay all-pass phase equalizer with M= 61. (a) Magnitude response, (b) absolute approximation 
error, (c) group delay response, (d) group delay error response. 

design examples to justify that the proposed 
approximation method works well and support 
that its performance is superior to both Pei-Shyu's 
method and Chit-Mason's method. Finally, let us 
summarize some other remarks with regard to the 
proposed approximation method as follows: 
(1) The proposed method is computationally more 

efficient than the Chi-Kou's method for the 
linear phase case from the viewpoint of total 
iterations spent for convergence by our experi- 
ence (see (R3) and Example 1). 

(2) As Chi-Kou's method, the proposed design 
method does not need any initial guess for a 
suitable set of extremal frequencies or filter 
coefficients. 

(3) As both Chi-Kou's method and Parks- 
McClellan's method, the proposed approxima- 
tion method also allows the exact specification 

of the cutoff frequencies because the cutoff fre- 
quencies determine the frequency interval BNx 
formed by the nontransition bands over which 
the whole design procedure is to make 
[ We(k)E(k)[ equiripple. 

(4) If the implicit constraints on filter coefficients 
can be obtained ahead of time, as mentioned 
previously, they can be easily taken into 
account in the proposed approximation 
method (also see Examples 1, 4 and 5). If they 
are not known and thus are ignored by the 
proposed approximation method, the same 
optimum filter can still be obtained as long as 
the value for parameter N (number of uniform 
samples of the desired frequency response used 
for the linear model (4)) used is large enough. 

(5) Contrast to Chit-Mason's time-domain LMS 
approximation methods [5, 10], the proposed 
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method is a frequency-domain WLS method 
based on similar philosophies (see (R4)). How- 
ever, the latter has better performance than the 
former although the designed optimum filters 
by both methods are equiripple. 

(6) The proposed method is also computationally 
efficient since the direct solution for the opti- 
mum filter coefficients by the WLS estimator 
(see (6)) is quite straightforward. The WLS 
estimate can also be efficiently computed in 
a recursive fashion without matrix inversion 
[12]. 

(7) The proposed algorithm is also applicable in 
the case of complex filter coefficients by replac- 
ing the linear model (4) and the WLS estimate 
(6) with 

E=Hd-Dh (19) 

and 

/~ = [D H WD]-' D n WHd, (20) 

respectively, where E(k) in E denotes E( f =  
k/N), Hd(k) in Hd denotes Hd(f =k/N), D n 
is the complex conjugate transpose of N x M 
matrix D whose (k, i)th element is equal to 
exp{-j2r~(k- 1)( i -  1)/N}. Note that N is the 
total number of uniform samples in the inter- 
val [0, 1] for this case. 
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